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Faber et al. 2005

Build-up of  the red sequence
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Star formation history of  galaxies

Problems:

1. Model assumptions

2. What were the stellar masses of  these

     galaxies at the time the stars were formed?

Thomas et al. 2005
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Direct information at high redshift



Do evolved galaxies exist at even higher 
redshift?

Balmer + 4000 Angstrom Break

V+I K

Labbe et al. 2003
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z=2.47

Daddi et al. 2005



Typical SED for a 
quiescent galaxy

Why is it so difficult to obtain redshifts 
for z>2 quiescent galaxies?



Motivation

• When was the star formation in massive 
galaxies quenched?

‣ Beyond z>2? (e.g., Labbe et al. 2005, Reddy et al. 2005/2006, 
Daddi et al. 2005) 

‣ Problems:

• Most studies rely on photometric redshifts

• Mostly broadband photometric studies



Why are broadband photometric 
studies not sufficient?
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Why are broadband photometric 
studies not sufficient?

Quiescent galaxy

Dusty starburst



Spectroscopic survey of  massive 
galaxies at z~2.5 with Gemini/GNIRS



GNIRS survey overview

• Observation: x-disperser 1-2.5 micron

• Selection

‣ 2.0 < z_phot < 2.7 (MUSYC photometry)

‣ K-selected (<19.7)



Stellar mass vs. K-magnitude

2.0 < z < 3.0

M >1011M⦿

K<19.7

van Dokkum et al. 2006



GNIRS survey overview

• Observation: x-disperser 1-2.5 micron

• Selection

‣ 2.0 < z_phot < 2.7 (MUSYC photometry)

‣ K-selected (<19.7)

• Sample: 26 Galaxies (+ 4 nights in Dec)

‣ 6 galaxies with 1.8  < z_spec < 2.0

‣ 20 galaxies with 2.0 < z_spec < 2.7

• Follow-up: NIRSPEC, SINFONI, NIRC2-AO, 
NICMOS, IRAC, MIPS, LDSS3



Galaxies without detected Hα emission



Galaxies without detected Hα emission



Galaxies without detected Hα emission



Galaxies without detected Hα emission



Kriek et al. 2006b



Kriek et al. 2006b

✦ No Hα detection

✦ Large Balmer Breaks

✦ Best fit to spectra: low SFRs



Stellar populations in galaxies at z~2.3

Erb et al. 2006, Kriek et al. 2006b
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Erb et al. 2006, Kriek et al. 2006b
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Did we miss obscured star formation?
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Morphologies of  quiescent z~2.3 galaxies 

Kriek et al. in preparation
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Why do models need AGN feedback?

All massive galaxies are blue Massive galaxies are both 
blue and red

Cattaneo et al 2006



Why do models need AGN feedback?

AGN radio heating

Croton et al 2006

no heating source



Examples of  AGN feedback

Radio galaxy at z=2.2 
(Nesvadba et al. 2006)

Perseus (Fabian+)

Halpha map

Comp. X-ray image
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Motivation

• When was the star formation in massive 
galaxies quenched?

‣ In a substantial part of  the massive galaxies at z~2.3 
the star formation is already strongly suppressed

• What is the role of  AGNs in the star 
formation history of  galaxies?



Downsizing of  AGN

The density of  more 
luminous AGNs peaks 
at higher redshift than 
the density of  less 
luminous AGNs

426 G. Hasinger et al.: Luminosity-dependent evolution of soft X-ray selected AGN

Fig. 5. a) The space density of AGNs as a function of redshift in different luminosity classes and the sum over all luminosities with log Lx ≥ 42.
Densities from the PLE and LDDE models (Sect. 4.4) are overplotted with solid lines. b) The same as a), except that the soft X-ray emissivities
are plotted instead of number densities. The uppermost curve (black) shows the sum of emissivities in all luminosity classes plotted.

Table 4. Best-fit evolution parameters for each luminosity bin.

log Lx-range log Lxc N A0 p1 zc p2 KS–probb

42.0–43.0 42.5 117 (7.67 ± 1.28) × 10−6 4.90+1.21
−1.12 0.65+0.12

−0.12 −2.4+1.0
−1.1 0.47, 0.77, 0.64

43.0–44.0 43.5 381 (1.59 ± 0.15) × 10−6 3.89+0.43
−0.50 1.11+0.22

−0.11 −1.8+0.7
−1.1 0.55, 0.25, 0.39

44.0–45.0 44.5 303 (1.83 ± 0.19) × 10−8 5.51+0.38
−0.37 1.78+0.14

−0.16 −1.8+1.3
−1.4 0.05, 0.47, 0.07

45.0–46.0 45.5 53 (4.90 ± 1.21) × 10−11 6.06+1.18
−1.22 1.79+0.59

−0.26 −0.4(*) 0.81, 0.98, 0.62

Parameter values which have been fixed during the fit are labelled by (*). a Units – A0: h3
70 Mpc−3, Lx,∗: 1044 h−2

70 erg s−1. b The three values are
probabilities in two 1D–KS test for the distribution, Lx, 1D–KS test for the z distribution and the 2D–KS test for the (Lx,z) space respectively.

not necessarily apply to the centers of the (Lx, z) bins. This bin-
ning bias tends to be especially a problem if data are scarce (of-
ten at higher redshifts) and gradients across bins are large. The
previous section describes a procedure that corrects the binned
space densities to first order.

In this section, we avoid deriving densities from binned
survey data. Instead, we use the Vmax values of individual
RBS sources to derive the zero redshift luminosity function. We
then derive by iteration an analytical density template at vari-
ous Lx values that, together with the zero redshift luminosity
function, accounts for the observed counts and redshifts of the
deeper surveys. The end result of the procedure is a set of ob-
served values of the luminosity function that apply to the cen-
ters of the (Lx, z) bins, and that is quite insensitive to the precise
template employed. A further advantage of employing Vmax of
individual sources is that it can be derived for two or more se-
lection variables. This allows us to account for the effect of a
spectroscopic magnitude limit in some of the deeper surveys
beyond which the redshift is unknown for most of the sources.
In the first use of Vmax, this feature was used to derive the

luminosity function of radio quasars from a sample in which
only the optically brightest objects had redshifts (Schmidt
1968).

5.1. Using Vmax to derive the luminosity function

The derivation of a luminosity function from objects in a well
defined sample usually involves binning the observations in
redshift and luminosity. If we make the bins in luminosity so
small that each contains only one or zero objects then the lu-
minosity function is composed of contributions from each of
the individual sample objects. In the limit, each of the objects
contributes to the luminosity function a delta function of am-
plitude 1/Vmax at the object’s luminosity L, where Vmax is the
co-moving, density-weighted volume over which the object can
be observed within the sample limits in flux and solid angle.
This luminosity function will reproduce the source counts of
the input sample exactly.

We write the luminosity function as

Φ(Lx, z) = Φ(Lx, 0)ρ(z, Lx) (13)
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not necessarily apply to the centers of the (Lx, z) bins. This bin-
ning bias tends to be especially a problem if data are scarce (of-
ten at higher redshifts) and gradients across bins are large. The
previous section describes a procedure that corrects the binned
space densities to first order.

In this section, we avoid deriving densities from binned
survey data. Instead, we use the Vmax values of individual
RBS sources to derive the zero redshift luminosity function. We
then derive by iteration an analytical density template at vari-
ous Lx values that, together with the zero redshift luminosity
function, accounts for the observed counts and redshifts of the
deeper surveys. The end result of the procedure is a set of ob-
served values of the luminosity function that apply to the cen-
ters of the (Lx, z) bins, and that is quite insensitive to the precise
template employed. A further advantage of employing Vmax of
individual sources is that it can be derived for two or more se-
lection variables. This allows us to account for the effect of a
spectroscopic magnitude limit in some of the deeper surveys
beyond which the redshift is unknown for most of the sources.
In the first use of Vmax, this feature was used to derive the

luminosity function of radio quasars from a sample in which
only the optically brightest objects had redshifts (Schmidt
1968).

5.1. Using Vmax to derive the luminosity function

The derivation of a luminosity function from objects in a well
defined sample usually involves binning the observations in
redshift and luminosity. If we make the bins in luminosity so
small that each contains only one or zero objects then the lu-
minosity function is composed of contributions from each of
the individual sample objects. In the limit, each of the objects
contributes to the luminosity function a delta function of am-
plitude 1/Vmax at the object’s luminosity L, where Vmax is the
co-moving, density-weighted volume over which the object can
be observed within the sample limits in flux and solid angle.
This luminosity function will reproduce the source counts of
the input sample exactly.

We write the luminosity function as

Φ(Lx, z) = Φ(Lx, 0)ρ(z, Lx) (13)

Hasinger et al. 2005



Downsizing of  AGN & stellar populations
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are plotted instead of number densities. The uppermost curve (black) shows the sum of emissivities in all luminosity classes plotted.
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not necessarily apply to the centers of the (Lx, z) bins. This bin-
ning bias tends to be especially a problem if data are scarce (of-
ten at higher redshifts) and gradients across bins are large. The
previous section describes a procedure that corrects the binned
space densities to first order.

In this section, we avoid deriving densities from binned
survey data. Instead, we use the Vmax values of individual
RBS sources to derive the zero redshift luminosity function. We
then derive by iteration an analytical density template at vari-
ous Lx values that, together with the zero redshift luminosity
function, accounts for the observed counts and redshifts of the
deeper surveys. The end result of the procedure is a set of ob-
served values of the luminosity function that apply to the cen-
ters of the (Lx, z) bins, and that is quite insensitive to the precise
template employed. A further advantage of employing Vmax of
individual sources is that it can be derived for two or more se-
lection variables. This allows us to account for the effect of a
spectroscopic magnitude limit in some of the deeper surveys
beyond which the redshift is unknown for most of the sources.
In the first use of Vmax, this feature was used to derive the

luminosity function of radio quasars from a sample in which
only the optically brightest objects had redshifts (Schmidt
1968).

5.1. Using Vmax to derive the luminosity function

The derivation of a luminosity function from objects in a well
defined sample usually involves binning the observations in
redshift and luminosity. If we make the bins in luminosity so
small that each contains only one or zero objects then the lu-
minosity function is composed of contributions from each of
the individual sample objects. In the limit, each of the objects
contributes to the luminosity function a delta function of am-
plitude 1/Vmax at the object’s luminosity L, where Vmax is the
co-moving, density-weighted volume over which the object can
be observed within the sample limits in flux and solid angle.
This luminosity function will reproduce the source counts of
the input sample exactly.

We write the luminosity function as

Φ(Lx, z) = Φ(Lx, 0)ρ(z, Lx) (13)

How are these two 

behaviors related?
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AGNs may reflect the 
decrease of  the mass 
of  actively accreting 
black holes with 
redshift

Hasinger et al. 2005; Heckman et al. 2004
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Fig. 5. a) The space density of AGNs as a function of redshift in different luminosity classes and the sum over all luminosities with log Lx ≥ 42.
Densities from the PLE and LDDE models (Sect. 4.4) are overplotted with solid lines. b) The same as a), except that the soft X-ray emissivities
are plotted instead of number densities. The uppermost curve (black) shows the sum of emissivities in all luminosity classes plotted.

Table 4. Best-fit evolution parameters for each luminosity bin.

log Lx-range log Lxc N A0 p1 zc p2 KS–probb

42.0–43.0 42.5 117 (7.67 ± 1.28) × 10−6 4.90+1.21
−1.12 0.65+0.12

−0.12 −2.4+1.0
−1.1 0.47, 0.77, 0.64
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−0.37 1.78+0.14

−0.16 −1.8+1.3
−1.4 0.05, 0.47, 0.07

45.0–46.0 45.5 53 (4.90 ± 1.21) × 10−11 6.06+1.18
−1.22 1.79+0.59

−0.26 −0.4(*) 0.81, 0.98, 0.62

Parameter values which have been fixed during the fit are labelled by (*). a Units – A0: h3
70 Mpc−3, Lx,∗: 1044 h−2

70 erg s−1. b The three values are
probabilities in two 1D–KS test for the distribution, Lx, 1D–KS test for the z distribution and the 2D–KS test for the (Lx,z) space respectively.

not necessarily apply to the centers of the (Lx, z) bins. This bin-
ning bias tends to be especially a problem if data are scarce (of-
ten at higher redshifts) and gradients across bins are large. The
previous section describes a procedure that corrects the binned
space densities to first order.

In this section, we avoid deriving densities from binned
survey data. Instead, we use the Vmax values of individual
RBS sources to derive the zero redshift luminosity function. We
then derive by iteration an analytical density template at vari-
ous Lx values that, together with the zero redshift luminosity
function, accounts for the observed counts and redshifts of the
deeper surveys. The end result of the procedure is a set of ob-
served values of the luminosity function that apply to the cen-
ters of the (Lx, z) bins, and that is quite insensitive to the precise
template employed. A further advantage of employing Vmax of
individual sources is that it can be derived for two or more se-
lection variables. This allows us to account for the effect of a
spectroscopic magnitude limit in some of the deeper surveys
beyond which the redshift is unknown for most of the sources.
In the first use of Vmax, this feature was used to derive the

luminosity function of radio quasars from a sample in which
only the optically brightest objects had redshifts (Schmidt
1968).

5.1. Using Vmax to derive the luminosity function

The derivation of a luminosity function from objects in a well
defined sample usually involves binning the observations in
redshift and luminosity. If we make the bins in luminosity so
small that each contains only one or zero objects then the lu-
minosity function is composed of contributions from each of
the individual sample objects. In the limit, each of the objects
contributes to the luminosity function a delta function of am-
plitude 1/Vmax at the object’s luminosity L, where Vmax is the
co-moving, density-weighted volume over which the object can
be observed within the sample limits in flux and solid angle.
This luminosity function will reproduce the source counts of
the input sample exactly.

We write the luminosity function as

Φ(Lx, z) = Φ(Lx, 0)ρ(z, Lx) (13)

More massive 
black hole

Less massive  
black holes
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Densities from the PLE and LDDE models (Sect. 4.4) are overplotted with solid lines. b) The same as a), except that the soft X-ray emissivities
are plotted instead of number densities. The uppermost curve (black) shows the sum of emissivities in all luminosity classes plotted.
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not necessarily apply to the centers of the (Lx, z) bins. This bin-
ning bias tends to be especially a problem if data are scarce (of-
ten at higher redshifts) and gradients across bins are large. The
previous section describes a procedure that corrects the binned
space densities to first order.

In this section, we avoid deriving densities from binned
survey data. Instead, we use the Vmax values of individual
RBS sources to derive the zero redshift luminosity function. We
then derive by iteration an analytical density template at vari-
ous Lx values that, together with the zero redshift luminosity
function, accounts for the observed counts and redshifts of the
deeper surveys. The end result of the procedure is a set of ob-
served values of the luminosity function that apply to the cen-
ters of the (Lx, z) bins, and that is quite insensitive to the precise
template employed. A further advantage of employing Vmax of
individual sources is that it can be derived for two or more se-
lection variables. This allows us to account for the effect of a
spectroscopic magnitude limit in some of the deeper surveys
beyond which the redshift is unknown for most of the sources.
In the first use of Vmax, this feature was used to derive the

luminosity function of radio quasars from a sample in which
only the optically brightest objects had redshifts (Schmidt
1968).

5.1. Using Vmax to derive the luminosity function

The derivation of a luminosity function from objects in a well
defined sample usually involves binning the observations in
redshift and luminosity. If we make the bins in luminosity so
small that each contains only one or zero objects then the lu-
minosity function is composed of contributions from each of
the individual sample objects. In the limit, each of the objects
contributes to the luminosity function a delta function of am-
plitude 1/Vmax at the object’s luminosity L, where Vmax is the
co-moving, density-weighted volume over which the object can
be observed within the sample limits in flux and solid angle.
This luminosity function will reproduce the source counts of
the input sample exactly.

We write the luminosity function as

Φ(Lx, z) = Φ(Lx, 0)ρ(z, Lx) (13)
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Massive galaxies at z~2.3
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SEDs of  AGN host galaxies

Kriek et al. submitted



Stacked spectra and composite SEDs

Kriek et al. submitted



Stellar masses of  AGN hosts

Erb et al. 2006; Kriek et al. submitted
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Motivation & Conclusions

• When was the star formation in massive 
galaxies suppressed?

‣ In a substantial part of  the massive galaxies at z~2.3 
the star formation is already strongly suppressed

• What is the role of  AGNs in the star 
formation history of  galaxies?

‣ AGN host galaxies exhibit cosmic downsizing:     
related to the decrease of  the typical mass-scale at 
which  the star formation in galaxies is quenched

‣ Actively accreting AGNs may mainly reside in post-
starburst or transitional galaxies


